

The Reaction of the Baylis-Hillman Adducts of N-Tosylimines with N,N-Dimethylformamide Dimethylacetal

Hong Jung Lee, Hyoung Shik Kim, and Jae Nyoung Kim*

Department of Chemistry, Chonnam National University, Kwangju 500-757, Korea

Received 24 February 1999; revised 5 April 1999; accepted 9 April 1999

Abstract

The reaction of N,N-dimethylformamide dimethylacetal (DMF-DMA) and the Baylis-Hillman adducts of N-tosylimines afforded N-methyl-N-tosyl allylic amine derivatives stereoselectively in moderate yields. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: N,N-dimethylformamide dimethylacetal, Baylis-Hillman adducts, N-tosylimines, N-methyl-N-tosyl allylic amine derivatives

Baylis-Hillman reaction is one of the most powerful carbon-carbon bond forming reactions in organic chemistry. Most of the Baylis-Hillman reaction constitutes the reaction of activated vinyl compounds and carbonyl compounds to produce the Baylis-Hillman adducts viz allylic alcohol derivatives. Besides the usefulness of these Baylis-Hillman adducts themselves, further derivatization with various nucleophilic reagents toward synthetically useful compounds has been studied deeply. However, there were no reports on the reaction of the Baylis-Hillman adducts of N-tosylimines with amine or its equivalent nucleophiles.

During the course of our recent studies on the Friedel-Crafts reaction of arene nucleophiles with the Baylis-Hillman adducts of N-tosylimines, we need N-alkyl derivatives of the Baylis-Hillman adducts in order to examine the effects of N-alkyl groups on the stereochemistry. Thus, we examined the reaction of N, N-dimethylformamide dimethylacetal (DMF-DMA) and the Baylis-Hillman adducts 1 in DMF to prepare the N-methyl derivatives of 1. DMF-DMA has been used as a methylating agent of various compounds. However, to our surprise in the reaction we could isolate the rearranged N-methyl-N-tosyl allylic amine derivatives 2^{-3} in moderate yields as shown in Scheme 1. The reaction mechanism for the formation of 2^{-3} was proposed as follows as shown in Scheme 1. Michael type addition of methoxide, which might be present in DMF-DMA in small amounts, to 1 gave a tetrahedral intermediate I. The intermediate I was converted to the product by three successive steps: (1) loss of tosylamide anion, (2) nucleophilic displacement of methoxy group of II or Michael type reaction of 1 by the tosylamide anion, and (3) N-methylation by DMF-DMA. More interestingly, depending upon the EWG in starting materials, stereochemistry of the generated allylic amines could be controlled. As shown in Table 1, E-allylic amine derivatives 2 were obtained stereoselectively where EWG is ester functionality, while the corresponding Z form 3 was obtained in the cases of nitrile derivatives. The assignment of the stereochemistry of 2^{-3} was based on their 2^{-3} has based on the 2^{-3}

These remarkable discrepancy in stereochemistry could be explained by the relative stabilities of the possible tetrahedral intermediates $\mathbf{A} - \mathbf{D}$ as shown in Figure 1. Steric bulkiness of the ethoxycarbonyl group might be bigger than methoxymethyl which in turn is bigger than the cyano group. Thus, the energies of the intermediate \mathbf{A} and \mathbf{D} might be lower than the corresponding energies of \mathbf{B} and \mathbf{C} . The reaction of \mathbf{la} and \mathbf{N} -methyl

Scheme 1

Figure 1. Conformations of tetrahedral intermediate I leading to the (E)-2 and (Z)-3.

Table 1. Synthesis of N-methyl-N-tosyl allylic amine derivatives 2-3.

entry	substrate	conditions ^a	product (% yield)
1	NHTs COOEt 1a	DMF-DMA (2 equiv) 12 h	COOEt N—Ts Me
2	COOEt 1b	DMF-DMA (2 equiv) 10 h	COOEt F N-Ts Me
3	NHTs COOEt 1c	DMF-DMA (2 equiv) 24 h	COOEt 2c (40)
4	CN 1d	DMF-DMA (2 equiv) 2 h	N Me CN Ts 3d (38)
5	NHTs CN 1e	DMF-DMA (2 equiv) 1 h	N Me CN Ts 3e (47)
6	NHTs CN 1f	DMF-DMA (2 equiv) 2 h	N Me CN Ts 3f (46)
7	MeO 1g	DMF-DMA (2 equiv) 2 h N	N Me
8	1a	TsNHMe (1 equiv) K₂CO₃. 12 h	COOEt N-Ts COOEffs Ne $2a (33, E/Z = 65:35)^b$
9	1 d	TsNHMe (1 equiv) K ₂ CO ₃ , 12 h	N Me CN Ts 3d (45)

^aAll reactions were carried out in 10 mmol scale of 1a-g in DMF at 70-80 °C for time indicated. ^bRatio determined by ¹H NMR spectrum.

p-toluenesulfonamide in the presence of K_2CO_3 in DMF gave also the corresponding 2a in 33% isolated yield. However, in this case E and Z form was obtained as a mixture (entry 8). The energies of the corresponding tetrahedral intermediates A and B in this case become comparable due to the comparable bulkiness of -COOEt and -CH₂N(CH₃)Ts. Whereas, the reaction of 1d in the same reaction conditions gave Z-isomer 3d stereoselectively as in the cases of using DMF-DMA (entry 9). The yields of 2-3 were moderate due to the formation of side products 4 (0-12%) and/or 5^6 (trace-49%) in the reaction conditions as shown in Scheme 2. These results also state that N-methylation occur in the final stage and the presence of tosylamide in the reaction mixtures. Thus our proposed mechanism for the reaction seems plausible.

Scheme 2

Our initial target compound N-methyl derivatives of 1 could be prepared easily by CH_3I/K_2CO_3 in DMF, and the effects of alkyl substituents on the Friedel-Crafts reactions are under study. As a summary, in this report we developed a stereoselective preparation method of allylic amine derivatives from the easily available Baylis-Hillman adducts. Further studies on the substitution reaction with various kinds of nucleophiles are undergoing.

Acknowledgments. We wish to thank the Chonnam National University Research Foundation and the Korea Research Foundation for financial support of this work.

References and Notes

- (a) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653.
 (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001.
 (c) Brzezinski, L. J.; Rafel, S.; Leahy, J. W. J. Am. Chem. Soc. 1997, 119, 4317.
 (d) Rafel, S.; Leahy, J. W. J. Org. Chem. 1997, 62, 1521
- 1931, 194, 4317. (d) Rafel, S.; Leahy, J. W. J. Org. Chem. 1997, 62, 1521.
 (a) Basavaiah, D.; Sarma, P. K. S. J. Chem. Soc. Chem. Commun. 1992, 955. (b) Charette, A. B.; Cote, B.; Monroc, S.; Prescott, S. J. Org. Chem. 1995, 60, 6888. (c) Basavaiah, D.; Krishnamacharyulu, M.; Hyma, R. S.; Pandiaraju, S. Tetrahedron Lett. 1997, 38, 2141. (d) Chavan, S. P.; Ethiraj, K. S.; Kamat, S. K. Tetrahedron Lett. 1997, 38, 7415. (e) Perlmutter, P.; Tabone, M. Tetrahedron Lett. 1988, 29, 949. (f) Lawrence, R. M.; Perlmutter, P. Chem. Lett. 1992, 305.
- 3. Lee, H. J.; Seong, M. R.; Kim, J. N. Tetrahedron Lett. 1998, 39, 6223.
- Paquette, L. A. Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, vol 3, pp 1987–1989.
- 5. As an example, ${}^{1}H$ and ${}^{13}C$ NMR spectral data of 2a and 3d were as follows. 2a: ${}^{1}H$ NMR (CDCl₃) δ 1.31 (t, J = 7.2 Hz, 3H), 2.43 (s, 3H), 2.59 (s, 3H), 4.08 (s, 2H), 4.24 (q, J = 7.2 Hz, 2H), 7.28–7.61 (m, 9H), 7.93 (s, 1H); ${}^{13}C$ NMR (CDCl₃) δ 14.15, 21.50, 34.63, 45.77, 61.29, 126.71, 127.84, 128.62, 129.43, 129.59, 130.14, 133.10, 134.22, 143.47, 144.60, 167.60. 3d: ${}^{1}H$ NMR (CDCl₃) δ 2.44 (s, 3H), 2.84 (s, 3H), 3.97 (s, 2H), 7.18 (s, 1H), 7.30–7.60 (m, 9H); ${}^{13}C$ NMR (CDCl₃) δ 21.50, 35.16, 53.86, 105.83, 117.60, 127.52, 128.92, 129.05, 129.88, 130.89, 132.68, 134.57, 143.94, 146.02.
- 6. (a) Lee, G.; Oka, M.; Takemura, H.; Miyahara, Y.; Shimizu, N.; Inazu, T. *J. Org. Chem.* **1996**, *61*, 8304. (b) Han, Y.; Cai, L. *Tetrahedron Lett.* **1997**, *38*, 5423 and references cited therein.
- In certain cases the corresponding intermediate II and III were isolated in trace amounts.